
Section B1:  Linear Regression 
 
B1.1.  Introduction 
Linear regression, also known as ordinary least square (OLS), is a method of analyzing linear 
relationships between variables.  Particular methods used depend on the type of data set to be 
analyzed.  Types of data sets used in regression analyses include the following: 
 

• A cross-sectional data set comprises records for a sample of businesses, individuals, 
households, cities, states, etc. measured for a time period called a reporting or reference 
period (e.g., a day, week, or month).  Differences between members of a cross-sectional 
dataset are treated as random. 

• A time series data set comprises observations on a variable or collection of variables for a 
sequence of different reference periods, e.g., months or years. 

• A pooled cross-sectional data set comprises records from two or more disjoint cross 
sectional data sets, where each cross sectional data set may have a different temporal 
reference period. 

• A panel or longitudinal data set consists of a time series for a collection of cross-
sectional members.  The cross-sectional members, sometimes called a cohort, remain the 
same for all reference periods. 

 
The basic OLS estimation and diagnostic techniques were originally developed for use with 
cross-sectional data sets.  Methods were extended for use with other types of data.  Time series 
data presents special problems, e.g., it may be difficult to tell whether or not any changes over 
time can safely be treated as random.  Specialized techniques have been developed for time-
series regression.  These techniques exploit the across-time correlation in time series data and 
address concerns regarding “spurious regression” (the appearance of correlation between series 
that merely exhibit a similar trend).  Specialized time-series regression techniques include co-
integration analysis with error-correction models and dynamic linear regression models under the 
Bayesian paradigm. 
 
 
B1.2.  Estimating Regression Coefficients 
We assume that a dependent (response) variable 𝑦𝑦 varies with a set of independent explanatory 
variables 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚.  The variation in 𝑦𝑦 has two components: 

 
• A systematic component that can be modeled as a linear function of the 𝑥𝑥 variables. 
• A random component that is unexplained and unrelated to any variation in the 𝑥𝑥 

variables.  The random component is represented by an error term 𝜀𝜀. 
 

The linear regression model has the general form 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚 + 𝜀𝜀, (B1.2.1) 
 
where 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑚𝑚 are fixed, unknown parameters, and 𝜀𝜀 is a normal (Gaussian) random 
variable representing the random component of the variation in 𝑦𝑦.  Conditional on the 
explanatory variables 𝑥𝑥𝑗𝑗, we assume the following: 



 
1. The expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 for all 𝑖𝑖. 
2. All of the 𝜀𝜀𝑖𝑖 have the same variance, i.e., 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 𝜎𝜎2 for all 𝑖𝑖. 
3. For 𝑗𝑗 ≠ 𝑖𝑖, the error terms 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑗𝑗 are independent, i.e.,  𝐸𝐸�𝜀𝜀𝑖𝑖, 𝜀𝜀𝑗𝑗� = 0. 

 
We also assume that the linear functional form B1.2.1 is appropriate and that none of the 
dependent variables 𝑥𝑥𝑗𝑗 may be expressed as a linear combination of the others. 
 
We apply linear regression analysis to a set of 𝑛𝑛 observed values of a dependent variable 𝑦𝑦 and 
𝑚𝑚 ≥ 1 associated independent variables 𝑥𝑥𝑗𝑗 to estimate the parameters 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑚𝑚.  For 𝑖𝑖 ∈
{1, … ,𝑛𝑛} we assume that the observed value 𝑦𝑦𝑖𝑖 can be estimated as a linear function 𝑦𝑦�𝑖𝑖 of the 
independent variables and the estimated parameters:  
 

 𝑦𝑦�𝑖𝑖 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑥𝑥𝑖𝑖,1 + ⋯+ 𝛽̂𝛽𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚. (B1.2.2) 
 
When using the model for prediction, we compute 𝑦𝑦�𝑘𝑘 ∉ {𝑦𝑦�1, … ,𝑦𝑦�𝑛𝑛}, where 𝑦𝑦𝑘𝑘 is unknown and 
the covariates 𝑥𝑥𝑘𝑘,1, … , 𝑥𝑥𝑘𝑘,𝑚𝑚 are known or predicted by other means.   
 
The vector of estimators 𝛃𝛃� that minimizes the sum of squared prediction errors ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  is 
the ordinary least squares (OLS) estimator of 𝛃𝛃.  It can be shown that 
 

 𝛃𝛃� = (𝐗𝐗′𝐗𝐗)−1𝐗𝐗′𝐲𝐲, (B1.2.3) 
 

where 𝐲𝐲 = �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� , 𝛃𝛃� = �

𝛽̂𝛽0
⋮
𝛽̂𝛽𝑚𝑚

� ,  and  𝐗𝐗 = �
1
⋮
1

 
𝑥𝑥1,1 ⋯ 𝑥𝑥1,𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑛𝑛,1 ⋯ 𝑥𝑥𝑛𝑛,𝑚𝑚

�. 

 
Although the matrix 𝐗𝐗′𝐗𝐗 is always square, it need not have a unique inverse.  When 𝐗𝐗′𝐗𝐗 is not of 
full rank, we cannot use OLS to estimate the parameters.  In this case, we must use generalized 
matrix inverses, and it may not be possible to estimate all the parameters. 
 
 
B1.3.  Regression Diagnostics 
Before using the results of a regression analysis, we compute test statistics that indicate whether 
or not the data support the assumptions embedded in the OLS model.  For 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, let 𝑦𝑦�𝑖𝑖 be 
as defined in equation B1.2.2.  The difference 𝜀𝜀𝑖̂𝑖 ≡ 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 is known as the 𝑖𝑖𝑡𝑡ℎ residual and plays 
an important role in model evaluation.  Some fundamental test statistics are based on the 
partitioned sum of squares.  Let 
 

 
𝑦𝑦� =

1
𝑛𝑛
�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. (B1.3.1) 

 
It can be shown that the sum of squares ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1  can be partitioned into two components 
representing Model Error (∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1 ) and Residual Error (∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 ): 



 
 

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

= �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

+ �(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

. (B1.3.2) 

          Total Error  =  Model Error  +  Residual Error 
 
The Model Error term ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  is the sum of the squared residuals. 
 
Mean Squared Error 
Hypothesis tests on the regression parameters use the mean squared error (MSE or 𝑠𝑠2), which is 
the sum of the squared residuals divided by the model’s degrees of freedom: 
 
 

 
𝑠𝑠2 =

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 −𝑚𝑚 − 1
=

∑ 𝜀𝜀𝚤𝚤�
2𝑛𝑛

𝑖𝑖=1

𝑛𝑛 − 𝑚𝑚 − 1
. (B1.3.3) 

 
The model’s degrees of freedom is the sample size 𝑛𝑛 minus the number of parameters estimated, 
𝑚𝑚 + 1.  To compute the MSE, we must have 𝑛𝑛 > 𝑚𝑚 + 1.  It can be shown that the MSE is an 
unbiased estimator of 𝜎𝜎2, the variance of the 𝜀𝜀’s. 
 
Coefficient of Variation 𝑅𝑅2 
The coefficient of determination or R2 statistic for a regression model is 
 

 
𝑅𝑅2 ≡ 1 −

Model Error
Total Error

= 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

. (B1.3.4) 

 
𝑅𝑅2 (sometimes called multiple 𝑅𝑅2) indicates the proportion of the total error that the independent 
variables explain.  Because the 𝑅𝑅2 statistic may be inflated by the use of a large number of 
explanatory variables, the adjusted 𝑅𝑅2 (𝑅𝑅𝐴𝐴2), which corrects for the number of degrees of 
freedom, is generally preferred: 
 

 

𝑅𝑅𝐴𝐴2 ≡ 1 −
∑ �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

(𝑛𝑛 −𝑚𝑚 − 1)� �𝑛𝑛
𝑖𝑖=1

∑ �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
(𝑛𝑛 − 1)� �𝑛𝑛

𝑖𝑖=1

= 1 −
(𝑛𝑛 − 1)𝑠𝑠2

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

. (B1.3.5) 

 
Variances of the Regression Coefficients 𝛽𝛽𝑗𝑗 
In order to compute test statistics, we estimate the variances and standard errors of the regression 
coefficients.  When there is only one 𝑥𝑥 variable, the variances of 𝛽𝛽0 and 𝛽𝛽1 are estimated as 
follows: 
 

 
𝑠𝑠𝛽𝛽�0
2 =

𝑠𝑠2 ∑ 𝑥𝑥𝑖𝑖,12𝑛𝑛
𝑖𝑖=1

𝑛𝑛 ∑ �𝑥𝑥𝑖𝑖,1 − 𝑥̅𝑥1�
2𝑛𝑛

𝑖𝑖=1

,  where 𝑥̅𝑥1 =
1
𝑛𝑛
�𝑥𝑥𝑖𝑖,1,
𝑛𝑛

𝑖𝑖=1

. (B1.3.6) 

 
and 



 
 

𝑠𝑠𝛽𝛽�1
2 =

𝑠𝑠2

∑ �𝑥𝑥𝑖𝑖,1 − 𝑥̅𝑥1�
2𝑛𝑛

𝑖𝑖=1

. (B1.3.7) 

 
When there are multiple explanatory variables, we estimate the covariance matrix of the vector 𝛃𝛃� 
as 
 

 𝒔𝒔𝛃𝛃�
𝟐𝟐 = 𝑠𝑠2(𝐗𝐗′𝐗𝐗)−1. (B1.3.8) 

 
Test for the significance of a parameter 𝛽𝛽𝑗𝑗 
For 𝑗𝑗 ∈ {0,1, … ,𝑚𝑚}, suppose we wish to test the hypothesis 
 
 

 𝐻𝐻0:  𝛽𝛽𝑗𝑗 = 0    vs.    𝐻𝐻𝐴𝐴:  𝛽𝛽𝑗𝑗 ≠ 0. (B1.3.9) 
 
For this two-sided hypothesis test, we may use the test statistic 
 

 
𝑡𝑡𝑗𝑗 =

𝛽̂𝛽𝑗𝑗
𝑠𝑠𝛽𝛽�𝑗𝑗

. (B1.3.10) 

 
For large samples, under the null hypothesis, the density of 𝑡𝑡𝑗𝑗 is approximately normal 
(Gaussian) with mean 0 and variance 1.  For 𝑍𝑍~𝑁𝑁(0,1), 𝑃𝑃(|𝑍𝑍| > 1.96) ≈ 0.05.  Thus when 
testing B1.3.9 with 𝛼𝛼 = 0.05, we generally reject 𝐻𝐻0 when 𝑡𝑡𝑗𝑗 ≥ 2.  This means that the 
explanatory variable 𝑥𝑥𝑗𝑗 explains a significant amount of the variation in the dependent variable 
𝑦𝑦. 
 
Weighted Least Squares and Robust Standard Errors 
The linear regression setup is based on several assumptions.  We assume, for example, that the 
linear functional form is appropriate and that the model’s systematic component incorporates all 
of the important explanatory variables.  Also, we assume that, for all 𝑖𝑖 ∈ {1, … ,𝑛𝑛},  
 

a) 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and 
b) 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 𝜎𝜎𝑖𝑖2 = 𝜎𝜎2. 

 
The assumption of constant variances (assumption b above), is called homoscedasticity.  When 
this assumption is violated, the data are heteroscedastic, and the following problems occur: 
 

• The least squares estimator (B1.2.3) is not a Best Linear Unbiased Estimator (BLUE).  It 
is still unbiased, but there is another estimator with lower variance. 

• The standard errors of the estimated coefficients, calculated by formula B1.3.8, may be 
incorrect; this can lead to erroneous conclusions from hypothesis tests. 

 
The Breusch-Pagen (BP) test is a 𝜒𝜒2 test that tests the null hypothesis of homoscedasticity 
against the alternative hypothesis that the data are heteroscedastic.  Other homoscedasticity tests 



are also discussed in the statistics literature.  For the BP test, we use an auxiliary regression 
equation to regress the residuals (𝜀𝜀𝑖̂𝑖) on the independent variables and compute the 𝑅𝑅2 statistic 
𝑅𝑅�2 from this regression.  Under the null hypothesis, the test statistic 𝑛𝑛𝑅𝑅�2 has a 𝜒𝜒2 distribution 
with 𝑚𝑚 degrees of freedom.  If the 𝑝𝑝-value from the 𝜒𝜒2 test falls below 0.05, we reject the null 
hypothesis and conclude that heteroscedasticity is present in the data. 
 
To find the BLUE in the presence of heteroscedasticity, we may use weighted least squares 
(WLS), which is an example of generalized least squares (GLS).  For 𝑖𝑖 ∈ {1, … , 𝑛𝑛}, let 𝐱𝐱𝑖𝑖 denote 
the values of the explanatory variables for observation 𝑖𝑖, and let 𝑤𝑤𝑖𝑖(𝐱𝐱𝑖𝑖) be a function of 𝐱𝐱𝑖𝑖 such 
that  
 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖|𝐱𝐱𝑖𝑖) = 𝜎𝜎2𝑤𝑤𝑖𝑖(𝐱𝐱𝑖𝑖). (B1.3.11) 
 
Then  
 

 
𝐸𝐸 � 𝜀𝜀𝑖𝑖

�𝑤𝑤𝑖𝑖(𝐱𝐱𝑖𝑖)
�𝐱𝐱𝑖𝑖� = 0  and  𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜀𝜀𝑖𝑖

�𝑤𝑤𝑖𝑖(𝐱𝐱𝑖𝑖)
�𝐱𝐱𝑖𝑖� = 𝜎𝜎2. (B1.3.12) 

 
Setting 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖(𝐱𝐱𝑖𝑖), we divide equation B1.2.1 by �𝑤𝑤𝑖𝑖 to obtain, for 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 
 

 𝑦𝑦𝑖𝑖
�𝑤𝑤𝑖𝑖

=
𝛽𝛽0
�𝑤𝑤𝑖𝑖

+ 𝛽𝛽1 �
𝑥𝑥𝑖𝑖,1
�𝑤𝑤𝑖𝑖

� + ⋯+ 𝛽𝛽𝑚𝑚 �
𝑥𝑥𝑖𝑖,𝑚𝑚
�𝑤𝑤𝑖𝑖

� +
𝜀𝜀𝑖𝑖
�𝑤𝑤𝑖𝑖

, (B1.3.13) 

 
or 
 

 𝑦𝑦�𝑖𝑖 = 𝛽𝛽0𝑥𝑥�𝑖𝑖,0 + 𝛽𝛽1𝑥𝑥�𝑖𝑖,1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥�𝑖𝑖,𝑚𝑚 + 𝜀𝜀𝑖̃𝑖, (B1.3.14) 
 
where 𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖

�𝑤𝑤𝑖𝑖
, 𝑥𝑥�𝑖𝑖,0 = 1

�𝑤𝑤𝑖𝑖
, 𝜀𝜀𝑖̃𝑖 = 𝜀𝜀𝑖𝑖

�𝑤𝑤𝑖𝑖
, and, for 𝑗𝑗 ∈ {1, … ,𝑚𝑚}, 𝑥𝑥�𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗

�𝑤𝑤𝑖𝑖
.  For the transformed 

equation B1.3.14, we have 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖̃𝑖) = 𝜎𝜎2 for all 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, so the homoscedasticity 
assumption is valid.  The regression results, however, must be interpreted using the original 
model B1.2.1. 
 
The use of WLS assumes the availability of an appropriate set of weights 𝑤𝑤𝑖𝑖.  An alternative is to 
use robust standard errors (also called heteroscedasticity-consistent standard errors or Huber-
White standard errors) when testing B1.3.9.  The robust variance is estimated as 
 

 
𝑠𝑠𝐻𝐻,𝛽𝛽�𝑗𝑗
2 =

∑ 𝑟̂𝑟𝑖𝑖,𝑗𝑗2 𝜀𝜀𝑖̂𝑖2𝑛𝑛
𝑖𝑖=1

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗2
, (B1.3.15) 

 
where 𝑟̂𝑟𝑖𝑖,𝑗𝑗 is the 𝑖𝑖𝑡𝑡ℎ residual from the auxiliary regression with 𝑥𝑥𝑗𝑗 as the dependent variable and 
all the other 𝑥𝑥’s as independent variables, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗2 is the sum of the squared residuals (𝜀𝜀𝑖̂𝑖’s) 
from this auxiliary regression.  For example, in a model with only one independent variable 𝑥𝑥, 
the robust variance estimate for 𝛽̂𝛽1 is 



 
 

𝑠𝑠𝐻𝐻,𝛽𝛽�1
2 =

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝜀𝜀𝑖̂𝑖2𝑛𝑛
𝑖𝑖=1
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

. (B1.3.16) 

 
Diagnostics such as 𝑡𝑡-statistics computed using the robust standard errors provide accurate 
results in the presence of heteroscedasticity. 
 
 
B1.4.  Instrumental Variables and Two-stage Lease Squares (2SLS)Regression Diagnostics 
In order for OLS estimator 𝛃𝛃� (shown in B1.2.3) to be consistent, the explanatory variables 
𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 must be exogenous, i.e., they must be uncorrelated with the error term 𝜀𝜀.  When one or 
more of the explanatory variables is correlated with 𝜀𝜀, they are jointly determined with the 
dependent variable 𝑦𝑦, and the use of two-stage least squares (2SLS) provides consistent 
parameter estimates for the model B1.2.1.  The 2SLS technique, which employs instrumental 
variables to compensate for deficiencies in the OLS model, is also useful when important 
variables determining 𝑦𝑦 cannot be accurately measured.  
 
Consider the model 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝜀𝜀, (B1.4.1) 
 
and suppose that the explanatory variable 𝑥𝑥2 is endogenous or cannot be accurately measured.  If 
we perform OLS with 𝑥𝑥2 omitted, it will be incorporated into the error term 𝜀𝜀, and the 
coefficients 𝛽𝛽0 and 𝛽𝛽1 (computed as in B1.2.3) may be biased.  A new variable 𝑧𝑧 that is 
correlated with 𝑥𝑥1 but not with 𝜀𝜀 may be used as an instrumental variable (IV) for 𝑥𝑥1.  We test 
the correlation between 𝑥𝑥1 and 𝑧𝑧 by fitting the model 
 

 𝑥𝑥1 = 𝛾𝛾0 + 𝛾𝛾1𝑧𝑧 + 𝜁𝜁, (B1.4.2) 
 
where 𝜁𝜁 is a normally distributed random error term, and testing the hypothesis 𝐻𝐻0:  𝛾𝛾1 = 0 vs. 
𝐻𝐻𝐴𝐴:  𝛾𝛾1 ≠ 0.  
 
The OLS model with 𝑥𝑥2 omitted is  
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜀𝜀. (B1.4.3) 
 
We compute the covariance of each term in B1.4.3 with the instrumental variable 𝑧𝑧:   
 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦, 𝑧𝑧) = 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1, 𝑧𝑧) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀, 𝑧𝑧), (B1.4.4) 
 
where we have used the fact that the covariance of 𝑥𝑥1 with the constant 𝛽𝛽0 is zero.  Because we 
assume that 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀, 𝑧𝑧) = 0, equation B1.4.4 yields the IV estimator of 𝛽𝛽1: 
 

 
𝛽̂𝛽1 =

𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦, 𝑧𝑧)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1, 𝑧𝑧), (B1.4.5) 



 
which we can estimate from the data.  In the special case that 𝑥𝑥1 = 𝑧𝑧, the 𝛽̂𝛽1 in B1.4.5 reduces to 
the usual OLS estimator.  The IV technique may be extended to the multiple regression setting in 
a straightforward manner. 
 
B1.5.  The Two-stage Least Squares (2SLS) Procedure 
In 2SLS, we assume that at least one instrumental variable is available for each endogenous 
explanatory variable in the OLS model (B1.2.1).  Consider the model 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚 + 𝛾𝛾1𝑦̈𝑦1 + ⋯+ 𝛾𝛾𝑝𝑝𝑦̈𝑦𝑝𝑝 + 𝜀𝜀, (B1.5.1) 
 
where the variables 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 are exogenous, and the variables 𝑦̈𝑦1, … , 𝑦̈𝑦𝑝𝑝 are endogenous.  For 
each endogenous explanatory variable 𝑦̈𝑦, we combine the available IV’s into a single IV by 
running an auxiliary regression of the form 
 

 𝑦̈𝑦 = 𝛾𝛾0 + 𝛾𝛾1𝑧𝑧1 + 𝛾𝛾2𝑧𝑧2 + ⋯+ 𝛾𝛾𝑞𝑞𝑧𝑧𝑞𝑞 + 𝜁𝜁, (B1.5.2) 
 
where 𝑞𝑞 is the number of IV’s for 𝑦̈𝑦 and 𝜁𝜁 is a normally-distributed error term.  In practice, we 
may include the exogenous explanatory variables in the OLS model B1.5.1, as well as all 
additional IV’s, as independent variables (𝑧𝑧’s) in equation B1.5.2.  Fitting the model B1.5.2 for 
each endogenous explanatory variable is the first stage of 2SLS. 
 
After fitting model B1.5.1, we compute the model’s fitted values for each observation: 
 

 𝑦̈𝑦� = 𝛾𝛾�0 + 𝛾𝛾�1𝑧𝑧1 + 𝛾𝛾�2𝑧𝑧2 + ⋯+ 𝛾𝛾�𝑝𝑝𝑧𝑧𝑝𝑝, (B1.5.3) 
 
where we have suppressed the subscript indicating an individual observation.  In the second 
stage of 2SLS, we fit model B1.5.1 with the estimated values 𝑦̈𝑦� substituted for the observed 𝑦̈𝑦 
values of the exogenous explanatory variables: 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚 + 𝛾𝛾1𝑦̈𝑦�1 + ⋯+ 𝛾𝛾𝑝𝑝𝑦̈𝑦�𝑝𝑝 + 𝜀𝜀. (B1.5.4) 
 
Although this is the second stage of 2SLS, the procedure should not be performed “by hand” in 
two independent stages, because the second stage model fitting will yield residuals and variance 
estimates that don’t account for the variance of the error term 𝜁𝜁 in equation B1.5.2.  Statistical 
software packages with 2SLS functions automatically correct these residuals and the associated 
diagnostic statistics. 
 
Because of the additional random error term in the 2SLS procedure, the variances of 2SLS 
coefficients always exceed those of the OLS coefficients computed from formula B1.2.3.  In the 
case of endogenous explanatory variables, however, 2SLS provides consistent parameter 
estimates, whereas the OLS estimates are inconsistent. 
 
 
 



B1.6.  Regression with Time Series Data 
A time series is a set of observations 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, where, for 𝑡𝑡 ∈ {1, … ,𝑛𝑛}, 𝑥𝑥𝑡𝑡 is the value or set of 
values observed for time period 𝑡𝑡.  We assume that the data are generated by a stochastic 
process, and thus contain random errors, and that the time intervals are equal and consecutive.  
Regression on time series data differs from regression on cross-sectional data because of the 
following considerations: 
 

1. Unlike cross-sectional data, time series data are ordered. 
2. While we assume that each cross-sectional observation is uncorrelated with the other 

observations, time series data are generally autocorrelated. 
 
The linear time-series regression model has the general form 
 

 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡, (B1.6.1) 
 
where, for 𝑡𝑡 ∈ {1, … ,𝑛𝑛}, the error term 𝜀𝜀𝑡𝑡 is independent of the explanatory variables 𝑥𝑥𝑡𝑡 for all 𝑡𝑡, 
and 𝜀𝜀𝑡𝑡~𝑁𝑁(0,𝜎𝜎2), conditional on the explanatory variables 𝑥𝑥𝑡𝑡,𝑗𝑗.    
 
In time series regression, all of the assumptions detailed in section B1.2 apply, and we add a 
further assumption regarding the error terms 𝜀𝜀𝑡𝑡:  we assume that, conditional on the sample data, 
error terms associated with different time periods are uncorrelated: 
 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑡𝑡, 𝜀𝜀𝑠𝑠) = 0  for all 𝑠𝑠 ≠ 𝑡𝑡. (B1.6.2) 
 
Time series regression also requires additional attention to independent variables that may be 
correlated with the error term.  For an explanatory variable 𝑥𝑥𝑡𝑡 to be considered exogenous, it 
cannot react to any past or future changes in the dependent variable 𝑦𝑦𝑡𝑡.  
 
Under these assumptions, we may apply OLS to time series data, estimating coefficients and 
diagnostic statistics as described in section B1. 
 
Dummy Variables 
Time series regression models often include binary variables, known as dummy variables, that 
represent events.  A dummy variable takes a value of 1 if the event occurred and a value of 0 
otherwise.  Common uses of dummy variables include the following: 
 

1. Reducing outlier effects by including a dummy variable that takes a value of 1 only in the 
time period coinciding with a series outlier. 

2. Accounting for seasonality by including monthly or quarterly dummy variables. 
3. Representing permanent changes, e.g., policy changes, that influence the dependent 

variable.  In this case, the value of the dummy variable is 0 for all time periods prior to 
the change and 1 for all time period after the change. 

 
Time Trends 
Many time series contain trends that can cause regression diagnostics to erroneously indicate 
causal relationships between series.  Two unrelated series with similar trends can appear 



correlated, leading to the “spurious regression problem.”  In some cases we may alleviate this 
problem by including a trend term in the model.  Adding a trend term 𝛼𝛼𝛼𝛼 to equation B1.6.1 
provides the model 
 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡, (B1.6.3) 
 
where 𝛼𝛼 is a trend parameter.  When the series 𝑦𝑦𝑡𝑡 contains both upward and downward trends, a 
quadratic trend term may be added to the model: 
 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼1𝑡𝑡 + 𝛼𝛼2𝑡𝑡2 + 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡. (B1.6.4) 
 
The addition of cubic and higher-ordered trend terms is allowed but usually not recommended, 
because too many polynomial trend terms may obscure the significance of the explanatory 
variables 𝑥𝑥𝑡𝑡,𝑗𝑗 .  
 
Autocorrelation in Time-series Regression Residuals 
To test that assumption B3.2.2 holds for a particular regression model, some regression software 
packages compute the Durbin-Watson (D-W) statistic: 
 

 
𝑑𝑑 =

∑ (𝜀𝜀𝑖̂𝑖 − 𝜀𝜀𝑖̂𝑖−1)2𝑛𝑛
𝑖𝑖=2
∑ 𝜀𝜀𝑖̂𝑖2𝑛𝑛
𝑖𝑖=1

. (B1.6.5) 

 
The D-W statistic compares the squared differences of adjacent residuals to the squared 
residuals.  If the squared differences are small relative to the squared residuals, resulting in a low 
value of 𝑑𝑑, there is evidence of first-order autocorrelation.  Critical values for the D-W statistic 
depend on 𝑛𝑛 and 𝑚𝑚.  The test is for first-order autocorrelation only, i.e., it tests only for 
correlation between residuals from adjacent time periods. 
 
One way to reduce the autocorrelation of time-series regression residuals is to include a lagged 
dependent variable as an independent variable in the model.  Model B1.6.1 then becomes 
 

 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽−1𝑦𝑦𝑡𝑡−1 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡. (B1.6.6) 
 
For models that include a lagged dependent variable as an independent variable, the D-W 
statistic underestimates autocorrelation.  For these models, Durbin proposed the ℎ-statistic, 
which is a bias-adjusted version of the D-W statistic.  It follows a normal distribution for large 
samples.  Let 𝛽𝛽−1 be the regression coefficient of 𝑦𝑦𝑡𝑡−1. When the variance 𝑠𝑠𝛽𝛽−1

2 < 1
𝑛𝑛
, 

 
 

ℎ = �1 −
𝑑𝑑
2
��

𝑛𝑛
1 − 𝑛𝑛𝑠𝑠𝛽𝛽−1

2 . (B1.6.7) 

 
Because the D-W statistic is difficult to interpret, Wooldridge (2018) suggests the alternative of 
performing a 𝑡𝑡-test on the estimated first-order correlation coefficient of the OLS residuals 𝜀𝜀𝑡̂𝑡.  
That is, we first run the OLS regression B1.6.1 and then run a second regression of 𝜀𝜀𝑡̂𝑡 on 𝜀𝜀𝑡̂𝑡−1.  



The 𝑡𝑡-statistic B1.3.10 of the coefficient of 𝜀𝜀𝑡̂𝑡−1 will indicate the significance of first-order 
autocorrelation in the OLS residuals.  The 𝑡𝑡-statistic is asymptotically normal and may be 
interpreted in the usual manner.  


